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ABSTRACT

We present a new reconstruction algorithm for emis-
sion and transmission tomography. The algorithm per-
forms maximum likelihood reconstruction and doubly
stochastic segmentation simultaneously. The resulting
reconstructions show promising edge-preservation as
well as suppression of measurement noise.

Index Terms— Image reconstruction, maximum like-
lihood estimation, image segmentation, positron emis-
sion tomography, transmission tomography.

1. INTRODUCTION

The literature on positron emission tomography, trans-
mission tomography, limited angle CT, and, most re-
cently, digital breast tomosynthesis contains a myriad
of reconstruction algorithms. Each of these algorithms
embodies a unique set of assumptions, and yields re-
constructions of varying quality depending on the ap-
plication. Perhaps the most common reconstruction al-
gorithm is the filtered backprojection (FBP) algorithm,
first proposed by Bracewell and Riddle in the context of
radioastronomy [1]. The major advantage of FBP is its
linearity and noniterative nature, which makes it com-
putationally efficient. Unfortunately, FBP yields streaky
reconstructions in the presence of measurement noise.
In the case of incomplete angular sampling, it also suffers
from an underrepresentation of low frequency content
(resulting in low contrast for larger masses), an inability
to respect object support, and the generation of addi-
tional streak artifacts. While several filter designs have
been proposed to alleviate these problems [2, 3], the use
of FBP in emission tomography and limited angle trans-
mission tomography inevitably leads to reconstructions
that are streaky and, to varying extents, unfaithful to the
original projection data.

Most alternative algorithms fall in the category of
iterative reconstruction algorithms, which includes al-
gebraic reconstruction (ART) algorithms [4] and penal-
ized maximum likelihood (PML) algorithms [5]. While

faithful to the projection data, algebraic reconstruction
techniques offer only limited noise and image modeling
opportunities. As a result, they perform poorly in the
presence of measurement noise. PML reconstruction
techniques allow for more advanced image and noise
modeling: by imposing local MRF constraints, solutions
can be easily regularized. To our knowledge, most pre-
vious work on PML reconstruction has applied such
constraints to pixel intensities, using either quadratic or
alternative, edge-preserving penalty functions [6, 7]. A
notable exception is [8], which uses a hybrid level set
(nonlocal) and MRF (local) approach to estimate region
boundaries and pixel intensities simultaneously. In this
work, we will apply a local spatial coherence constraint
to the class labels of object pixels, and develop a new si-
multaneous reconstruction and segmentation (SRS) al-
gorithm. The algorithm can be used for both emission
and transmission tomography, where the latter includes
applications such as limited angle CT and tomosynthe-
sis.

2. METHODS

2.1. Objective Function

Our objective is to maximize the joint posterior proba-
bility P(x, p, θ|r), where p is the hidden Markov measure
field proposed by Marroquin [9], x is the attenuation
or concentration map of the imaged object, r is the ob-
served projection data (photon counts), and θ is a vector
containing the model parameters that characterize the
tissue classes or concentration levels in the object. Using
Bayes’ rule and the definition of conditional probability,
the posterior probability can be decomposed as

P(x, p, θ|r) =
1
Zr

P(r|x)P(x|p, θ)P(p)P(θ) (1)

where we have assumed a uniform distribution for the
projection data r, and P(r|p, x, θ) = P(r|x) since the pro-
jection data depends only on the object’s attenuation or
concentration map.
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The data likelihood term P(r|x) is different for emis-
sion and transmission tomography. Conveniently, how-
ever, the data likelihood can in both cases be expressed
in the following general form:

log P(r|x) =
M∑

i=1

hi(li) + constant (2)

where each hi(li) is a concave function. In the case of
emission tomography, hi(li) is given by

hi(li) = −(li + bi) + ri log(li + bi) (3)

where li =
∑N

j=1 aijxj. The N-dimensional vector x is the
emission density of the object, aij is the probability that
a photon emitted by pixel j is detected by the ith detector
pair, ri is the photon count observed by the ith detector
pair, and bi denotes background events such as random
coincidences and scatter. In the case of transmission
tomography, hi(li) is given by

hi(li) = −
(
r0e−li + bi

)
+ ri log

(
r0e−li + bi

)
(4)

where li =
∑N

j=1 aijxj. The N-dimensional vector x is the
attenuation map of the object, aij is the length of traversal
of the ith ray through the jth pixel, ri is the photon count
observed by the ith detector, r0,i is the number of photons
leaving the source for the ith ray, and bi accounts for
scatter events.

The remaining terms in Eqn. 1 are identical for both
emission and transmission reconstruction. Assuming
conditional independence of the pixels, we can express
the conditional probability P(x|p, θ) as

P(x|p, θ) =
N∏

j=1

P(xj|p, θ), (5)

where

P(xj|p, θ) =
K∑
k

vj,kpj,k = vj · pj (6)

and K is the number of possible classes in the image. The
actual class labels fj of the pixels xj have been marginal-
ized out as described in Marroquin [9]. The kth entry of
the K-dimensional vector pj gives the prior probability
that the jth pixel belongs to the kth class. The kth entry
of the vector vj, in turn, specifies the probability that
the jth pixel belongs to the kth class, given the current
reconstructed pixel intensity xj and the class parameters
θ. Assuming that the intensities of each tissue class fol-
low a Gaussian distribution1 with mean μk and standard
deviation σk, the probabilities vj,k are written as

1Of course, alternative variation models are possible as well. In
other words, the SRS framework allows us to model the intensity
variations within each tissue class explicitly.

vj,k = PG,μk,σk (xj) =
1

σk
√

2π
exp

⎛⎜⎜⎜⎜⎝− (xj − μk)2

2σ2
k

⎞⎟⎟⎟⎟⎠ (7)

Next, the prior probability P(p) is subject to a Markov
Random Field distribution. In other words, we believe
that each vector pj should be similar to its neighbors.
The probability density function is given by the Gibbsian
penalty function

P(p) =
1

Zp
exp

⎡⎢⎢⎢⎢⎢⎣−∑
C

VC(p)

⎤⎥⎥⎥⎥⎥⎦ (8)

where Zp is a normalizing constant, C denotes the
cliques, and VC is a desirable potential function. Fol-
lowing Marroquin [9], we will use a simple quadratic
potential function:

Vr,s(pr, ps) = λ||pr − ps||2 = λ
K∑
k

(pr,k − ps,k)2 (9)

where r and s are neighboring pixels in a given clique,
and λ is a hyperparameter determining the strength of
the prior.

In this paper, we will assume a uniform distribution
for P(θ). Of course, it is usually possible to formulate a
feasible range of values for the parameters θ. We intend
to explore the effects of a non-uniform distribution at
our next available opportunity.

2.2. Optimization

The expression given by Eqn. 1 can be optimized by max-
imizing its natural logarithm, yielding the cost function

ψ(x, p, θ) = log P(r|x) + log P(x|p, θ) + log P(p), (10)

where any constant terms have been dropped. Note also
that the optimization problem is subject to the nonneg-
ativity constraint for x, and the simplex constraint for
p:

pj ∈ SK =

⎧⎪⎪⎨⎪⎪⎩pj ∈ RK :
K∑

k=1

pj,k = 1, pj,k ≥ 0, k = 1, ...,K

⎫⎪⎪⎬⎪⎪⎭
(11)

In the design of our algorithm, we pursue the fol-
lowing strategy for maximizing ψ(x, p, θ):

1. initialize x, p, and θ

2. holding p, θ fixed, optimize over x (image update)

3. holding x, θ fixed, optimize over p (measure field
update)
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4. holding x, p fixed, optimize over θ (parameter up-
date)

The proposed algorithm will cycle between steps 2, 3 and
4, until convergence is reached2. The completion of one
such cycle will constitute one iteration of the algorithm.

1) Image update
With p,θ fixed, we would like to maximize the fol-

lowing cost function over x:

ψ(x) =
M∑

i=1

hi(li) +
N∑

j=1

log(vj · pj) (12)

The first term can be approximated by parabolas
of an optimal curvature [10, 11]. The second term is
more difficult to handle, since it consists of the log of a
weighted sum of Gaussian distributions. We can sim-
plify the problem by approximating this Gaussian mix-
ture model by its first and second moments. This yields
a single Gaussian distribution with the following mean
and standard deviation:

μ∗j =
K∑

k=1

pj,kμk (13)

and

σ∗j =

√√√⎡⎢⎢⎢⎢⎢⎣
K∑

k=1

pj,k(σ2
k + μ

2
k)

⎤⎥⎥⎥⎥⎥⎦ − (μ∗j)2 (14)

Conveniently, this approximation turns the second
term into a simple parabola, which can be dealt with
very easily. Note that the approximation becomes more
accurate as the weighted sum of Gaussian becomes dom-
inated by one of the component Gaussians. The cost
function has become

ψ(x) ≈
M∑

i=1

hi(li) +
N∑

j=1

log(PG,μ∗j ,σ
∗
j
(xj))

=

M∑
i=1

hi(li) +
N∑

j=1

⎡⎢⎢⎢⎢⎢⎢⎣log

⎛⎜⎜⎜⎜⎜⎜⎝ 1

σ∗j
√

2π

⎞⎟⎟⎟⎟⎟⎟⎠ −
(xj − μ∗j)2

2(σ∗j)2

⎤⎥⎥⎥⎥⎥⎥⎦
= φ(x) (15)

Minorizing the first term on the right hand side as
mentioned above, we obtain

φ(x) ≥
M∑

i=1

qi(li; lni ) +
N∑

j=1

⎡⎢⎢⎢⎢⎢⎢⎣log

⎛⎜⎜⎜⎜⎜⎜⎝ 1

σ∗j
√

2π

⎞⎟⎟⎟⎟⎟⎟⎠ −
(xj − μ∗j)2

2(σ∗j)2

⎤⎥⎥⎥⎥⎥⎥⎦
= Q(x; xn) (16)

2Note that the algorithm cannot guarantee convergence onto a
global optimum - it may converge to a local maximum.

where qi(li; lni ) = hi(lni ) + ḣi(lni )(li − lni ) + 1
2 ci(lni )(li − lni )2,

and xn denotes the image estimate at the beginning of
the nth iteration. The optimal curvatures were given by
Erdogan and Fessler [10, 11] as

ci(lni ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
2

hi(0)−hi(lni )+ḣi(lni )lni
(lni )2

]
−
, lni > 0[

ḧi(0)
]
− , lni = 0,

(17)

which yields a parabola tangent at lni that intersects the
original hi function at li = 0. The cost function (16)
can be optimized efficiently using a sequential Newton-
Raphson coordinate ascent method.

2) Measure field update
Here, we would like to maximize the following cost

function over p:

ψ(p) =

N∑
j=1

log(vj · pj) −
∑

C

VC(p) (18)

=

N∑
j=1

log(vj · pj) − λ
N∑

j=1

⎧⎪⎪⎨⎪⎪⎩
I∑

i=1

⎛⎜⎜⎜⎜⎜⎝ci

K∑
k=1

(pj,k − pj̃i,k)2

⎞⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

where ci gives the weight associated with the ith neigh-
bor in the clique (in this study each clique contained 8
pixels), and j̃i identifies the ith neighbor of pixel j. The
weights ci associated with any neighbors that fall outside
of the image domain are set to zero.

The above optimization problem is similar to the
problem faced in [9], and can be solved using the Gra-
dient Projection Newtonian Ascent approach outlined
therein.

3) Parameter update
In this step, we aim to maximize the following cost

function over θ:

ψ(θ) =
N∑

j=1

log(vj · pj) (19)

This was achieved using the Gradient Projection New-
tonian Ascent method as well.

3. RESULTS

In applications such as limited angle CT, it is conceivable
that the natural variations in tissue attenuation proper-
ties are known a priori. This allows us to set the pa-
rameter vector θ accordingly, and to skip the parameter
update. Here, we will illustrate the results of such recon-
structions using a simple piecewise constant phantom,
where the standard deviations have been set to some
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(a) original

(b) FBP initialization
(noiseless projections)

(c) FBP initialization (pro-
jections with Poisson noise)

(d) SRS reconstruction
from noiseless projections

(e) SRS reconstruction,
Poisson noise

Fig. 1. SRS reconstructions from (d) noiseless and (e)
noisy (Poisson, 15,000 incident photons) projections.

small number. Fig. 1(d) shows a near-perfect recon-
struction from 50 noiseless views with a missing angular
range of 60o (missing ±30o about the x-axis). Fig. 1(e)
shows the same reconstruction from noisy views, where
the noise was Poisson distributed, and the number of
incident photons along each ray was 15,000.

Due to space limitations, we only present results
in 2D. The extension to three dimensions is however
straightforward. We plan to report more extensive re-
sults for limited angle CT, as well as emission tomogra-
phy and digital breast tomosynthesis, at our next oppor-
tunity. There, we will explore how factors such as hy-
perparameter relaxation, number of views, noise level,
and angular range affect the reconstruction quality.

4. CONCLUSION

We have developed an algorithm that uses doubly
stochastic segmentation to guide maximum likelihood
reconstruction in emission and transmission tomogra-
phy. The algorithm shows promising edge preservation
and noise suppression properties.

We are currently exploring the algorithm’s robust-
ness when the parameter values are not known a priori,
i.e. when the parameters θ have to be estimated along
with x and p during the course of the reconstruction.
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